Abstract

As silicon photovoltaic technology advances, charge carrier losses at the contacted interfaces of the silicon absorber are coming to dominate power conversion efficiency. The so-called passivated contact, which provides selective charge-carrier extraction while simultaneously reducing interface recombination, is thus of significant interest for next-generation silicon solar cells. However, achieving both low recombination and low resistance to charge carrier extraction has proven challenging. Here, we present a passivated contact technology based on polysilicon deposited using low pressure chemical vapour deposition (LPCVD) over an ultra-thin silicon dioxide layer, which achieves an excellent surface passivation with implied open-circuit voltage of 735 mV, a recombination prefactor below 1 fA cm−2 and contact resistivity below 1 mΩ cm2.Key to this technology is the deposition of an ultra-thin silicon dioxide interlayer under high temperature and low pressure condition, performed in-situ within a single process with the polysilicon deposition. Additionally, the passivating contact structure maintains its electronic properties at temperatures of up to 900 °C and is compatible with existing industrial processes. The presented work therefore represents a significant advancement in industrially-applicable passivated contact technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.