Abstract

The aim of the present work was the development of phosphorylcholine-based treatments for biofiltration membranes and the demonstration that such treatments prevent or inhibit protein fouling. Microfiltration membranes of cellulose triacetate, polyether sulphone and polyvinylidene fluoride were etched with oxygen in a plasma chamber to generate surface hydroxyl groups and were then treated with the monomer 2-methacryloyloxyethyl phosphorylcholine. These membranes were evaluated with water, buffer, bovine serum albumin (BSA), yeast fermentation broth, beer and orange juice. The treatment of cellulose triacetate membranes reduced both the initial flux and the extent of water fouling. In terms of the integrated flux, these factors tended to cancel each other out. For protein, the membranes gave similar or higher fluxes but worse fouling. The cellular feed (yeast) reacted more favourably to the coating than the BSA. The polyether sulphone was scarcely affected by the coating; fouling remaining high with most 'real' feeds. There was lower initial flux but less flux decline with water and beer. Washing with water and cleaning with Tergazyme did not restore the initial flux. Polyvinylidene fluoride membranes gave the most positive results. In most cases, the coating both increased initial flux and decreased the rate of fouling. The coating was particularly effective for BSA and for beer and orange juice, where fouling is probably caused by a polysaccharide rather than by a protein. Electron microscopy showed, nonetheless, that fouling by proteins was accompanied by protein adsorption primarily on the upper surface of the membrane and that coated membranes showed less deposition and in different places than did untreated membranes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.