Abstract

The binding of von Willebrand factor (vWF) to glycoprotein (GP) Ib-IX-V stimulates transmembrane signaling events that lead to platelet adhesion and aggregation. Recent studies have revealed that the signaling protein 14-3-3ζ binds directly to the cytoplasmic domain of GP Ib. In this study, the dynamic association of 14-3-3ζ with GP Ib-IX, the phosphoinositide 3-kinase (PI 3-kinase), or both, was investigated in resting, thrombin, or vWF and botrocetin-stimulated platelets by analysis of discrete subcellular fractions. Results of this study demonstrate maximal coimmunoprecipitation of 14-3-3ζ with GP Ib-IX in the nonstimulated cytosolic fraction and in the actin cytoskeletal fraction of thrombin- or vWF-stimulated human platelets. Immunoprecipitated 14-3-3ζ or GP Ib from cytosolic fractions contained PI 3-kinase enzyme activity and an 85-kd polypeptide recognized by antibodies to the p85 subunit of PI 3-kinase. After platelet activation, the level of association between these species decreased in the cytosolic fraction. However, increased complex formation between 14-3-3ζ and GP Ib-IX and between PI 3-kinase and GP Ib-IX was detected in actin cytoskeletal fractions derived from thrombin- or vWF-stimulated platelets. Recombinant glutathione S-transferase-14-3-3ζ fusion protein (14-3-3ζ–GST) inhibited affinity-captured PI 3-kinase enzyme activity up to 70% at 2 μmol/L 14-3-3ζ–GST. However, increasing concentrations up to 5 μmol/L 14-3-3ζ–GST resulted in the 3-fold enhancement of PI 3-kinase enzyme activity. We propose that the association between PI 3-kinase and 14-3-3ζ with GP Ib-IX serves to promote the rapid translocation of these signaling proteins to the activated cytoskeleton, thereby regulating the formation of 3-position phosphoinositide-signaling molecules in this subcellular compartment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.