Abstract

In this work, a phosphine-based covalent organic framework (Phos-COF-1) is successfully synthesized and employed as a template for the confined growth of broad-scope nanoparticles (NPs). Ascribed to the ordered distribution of phosphine coordination sites in the well-defined pores, various stable and well-dispersed ultrafine metal NPs including Pd, Pt, Au, and bimetallic PdAuNPs with narrow size distributions are successfully prepared as determined by transmission electron microscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, and powder X-ray diffraction analyses. It is also demonstrated that the as-prepared Phos-COF-1-supported ultrafine NPs exhibit excellent catalytic activities and recyclability toward the Suzuki-Miyaura coupling reaction, reduction of nitro-phenol and 1-bromo-4-nitrobenzene, and even tandem coupling and reduction of p-nitroiodobenzene. This work will open many new possibilities for preparing COF-supported ultrafine NPs with good dispersity and stability for a broad range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.