Abstract

Various phosphatidylcholines differing either in the stereochemistry around their chiral center or in the position of a cis double bond along the acyl chains were synthesized in order to study critical contact regions in the phospholipid molecule with adjacent cholesterol in model membranes. Microviscosities calculated from fluorescence depolarization of diphenylhexatriene and chain order from spin label studies were measured to monitor physical membrane properties. The enhancing effect of cholesterol on the microviscosity of membranes containing phosphatidylcholines with comparable acyl chain length was largest when the two acyl chains were saturated and smallest when both were unsaturated. Membranes prepared from phosphatidylcholines having a single cis double bond at different positions along the sn-2 acyl chain showed roughly the same changes of microviscosity or chain order upon incorporation of cholesterol. No discrimination was evident in the interaction between cholesterol and enantiomeric phosphatidylcholines or between the enantiomeric phosphatidylcholine molecules themselves. We conclude that the rigidifying effect of cholesterol in membranes does not depend on specific sites of interactino and that with respect to physical membrane properties phosphatidylcholine behaves as an achiral molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.