Abstract

Complex phosphates Ca0.5 + x Zn x E2 − x (PO4)3 (E = Ti, Zr) having NaZr2(PO4)3 (NZP) structure have been prepared and characterized by X-ray diffraction, electron probe microanalysis, IR spectroscopy, and differential thermal analysis (DTA). Their phase formation has been studied by X-ray powder diffraction and DTA. The concentration and temperature fields of existence of these NZP phases have been determined: substitution solid solutions exist in the range of compositions where 0 ≤ x ≤ 0.5. The Ca0.7Zn0.2Ti1.8(PO4)3 crystal structure has been refined by the Rietveld method (space group \(R\bar 3\), a = 8.3636(4) A, c = 21.9831(8) A, V = 1331.7(1) A3, Z = 6). The framework in the NZP structure is built of octahedra, which are populated by titanium and zinc atoms, and PO4 tetrahedra. Calcium atoms occupy extraframework positions. Extensive solid solution formation due to the accommodation of cations(2+) in the interstices within the NZP framework (M) and in the framework-forming octahedra (M′) makes it possible to design a plurality of new M0.5 + x M′ x E2 − x (PO4)3 phosphates with tailored structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.