Abstract
The main source of phosphorus for plants is inorganic phosphate (Pi), which is characterized by its poor availability and low mobility. Uptake of this element from the soil relies heavily upon the PHT1 transporters, a specific family of plant plasma membrane proteins that were identified by homology with the yeast PHO84 Pi transporter. Since the discovery of PHT1 transporters in 1996, various studies have revealed that their function is controlled by a highly complex network of regulation. This review will summarize the current state of research on plant PHT1 multigenic families, including physiological, biochemical, molecular, cellular, and genetics studies.
Highlights
Phosphorus is an essential macro-element for life
The results indicate that slight variations in the protein sequence of the PHT1 proteins could influence their affinity for Pi transport (Liu et al, 2008): when several M. truncatula PHT1 transporters with an 84% amino acid identity were expressed in yeast, their K m ranged broadly from 13 to 858 μM
The symbiosis-specific PHT1 phosphate transporter MtPT4 from the plant M. truncatula is only detected in cells containing arbuscules, and it has exclusively been located in the plasma membrane that surrounds arbuscular branches (Pumplin and Harrison, 2009)
Summary
Phosphorus is an essential macro-element for life. It plays a key role in many crucial processes such as heredity (DNA, RNA), cellular compartmentalization (membrane lipids), energy metabolism (ATP), and phosphorylation-based signaling mechanisms (Poirier and Bucher, 2002; Vance et al, 2003; Misson et al, 2005; Jouhet et al, 2007). Uptake of this element from the soil relies heavily upon the PHT1 transporters, a specific family of plant plasma membrane proteins that were identified by homology with the yeast PHO84 Pi transporter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.