Abstract

AimsThe aim of this study is to clarify the role of NLRP3 inflammasome in phosphate burden-induced vascular smooth muscle cell (VSMC) calcification. Main methodsVSMC calcification was induced using a high concentration of inorganic phosphate. After pharmacological inhibition or genetic silencing of the NLRP3 inflammasome, pyroptosis, or potassium efflux, the cells were examined by RT-qPCR, immunofluorescence, and western blotting to identify the NLRP3-mediated pathway for VSMC calcification. Key findingsCalcified VSMCs with α-smooth muscle actin (α-SMA) disarray presented features of pyroptosis, including caspase-1 maturation, cleaved gasdermin D (GSDMD), and a high supernatant level of lactate dehydrogenase A. Pharmacological inhibitions of caspase-1 and pyroptosis attenuated VSMC calcification, whereas interleukin-1β receptor antagonism did not. Unlike canonical NLRP3 activation, osteogenic VSMCs did not upregulate NLRP3 expression. However, NLRP3 genetic silencing or inhibitions, which targets different domains of the NLRP3 protein, could ameliorate VSMC calcification by aborting caspase-1 and GSDMD activation. Furthermore, potassium efflux through the inward-rectifier potassium channel, and not through the P2X7 receptor, triggered NLRP3 inflammasome activation and VSMC calcification. SignificanceIn the present study, we identified a potassium efflux-triggered NLRP3-caspase-1-mediated pyroptotic pathway for VSMC calcification that is unique and different from the canonical NLRP3 inflammasome activation. Therefore, targeting this pathway may serve as a novel therapeutic strategy for vascular calcification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.