Abstract

In this work the development of a pyruvate oxidase-based phosphate biosensor is illustrated. The use of polyelectrolyte stabilized recombinant pyruvate oxidase in conjunction with a porous conductive carbon results in the development of a simple, reproducible and stable phosphate biosensor. The polyelectrolyte diethylaminoethyl-dextran or DNA was used as the enzyme stabilizer, and the resulting enzyme–polyelectrolyte complexes were physically adsorbed into the transducer, a highly porous and conductive carbon electrode, for the construction of the biosensor. The optimized biosensor exhibits high operational (67% remaining activity after 220 h) and storage (49% remaining activity after 24 weeks) stability, and very good sensor-to-sensor reproducibility. The optimized phosphate biosensor was used for the measurement of the phosphate ion activity in serum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.