Abstract

Neutrophils are critically involved in host defense and tissue damage. Intrinsic signal mechanisms controlling neutrophil activities are poorly defined. We found that the expression of wild-type p53-induced phosphatase 1 (Wip1) in mouse and human neutrophils was downregulated quickly after neutrophil activation through JNK-microRNA-16 pathway. Importantly, the Wip1 expression level was negatively correlated with inflammatory cytokine productions of neutrophils in sepsis patients. Wip1-deficient mice displayed increased bactericidal activities to Staphylococcus aureus and were hypersensitive to LPS-induced acute lung damage with increased neutrophil infiltration and inflammation. Mechanism studies showed that the enhanced inflammatory activity of neutrophils caused by Wip1 deficiency was mediated by p38 MAPK-STAT1 and NF-κB pathways. The increased migration ability of Wip1KO neutrophils was mediated by the decreased CXCR2 internalization and desensitization, which was directly regulated by p38 MAPK activity. Thus, our findings identify a previously unrecognized function of Wip1 as an intrinsic negative regulator for neutrophil proinflammatory cytokine production and migration through multiple signal pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.