Abstract

The molecular mechanisms that fine tune TLRs responses need to be fully elucidated. Protein phosphatase-1 (PP1) has been shown to be important in cell death and differentiation. However, the roles of PP1 in TLR-triggered immune response remain unclear. In this study, we demonstrate that PP1 inhibits the activation of the MAPK and NF-κB pathway and the production of TNF-α, IL-6 in macrophages triggered by TLR3, TLR4, and TLR9 in a phosphatase-dependent manner. Conversely, PP1 knockdown increases TLRs-triggered signaling and proinflammatory cytokine production. Tautomycetin, a specific inhibitor of PP1, aggravates LPS-induced endotoxin shock in mice. We further demonstrate that PP1 negatively regulates TLR-triggered signaling by targeting TGF-β-activated kinase 1 (TAK1) serine 412 (Ser412) phosphorylation, which is required for activation of TAK1-mediated IL-1R and TLR signaling. Mutation of TAK1 Serine 412 to alanine (S412A) significantly inhibits TLR/IL-1R-triggered NF-κB and MAPK activation and induction of proinflammatory cytokines in macrophage and murine embryonic fibroblast cells. DNA damage-inducible protein 34 (GADD34) specifies PP1 to dephosphorylate TAK1 at Ser412. GADD34 depletion abolished the interaction between TAK1 and PP1, and it relieved PP1 overexpression-induced inhibition of TLRs signaling and proinflammatory cytokine production. In addition, knockdown of GADD34 significantly promotes TLR-induced TAK1 Ser412 phosphorylation, downstream NF-κB and MAPK activation, and proinflammatory cytokine production. Therefore, PP1, as a physiologic inhibitor, together with its regulatory subunit GADD34, tightly controls TLR-induced TAK1 Ser412 phosphorylation, preventing excessive activation of TLRs and protecting the host from overwhelmed inflammatory immune responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.