Abstract

We have characterized and localized phorbol ester binding sites in human autopsied brains, using [3H]phorbol 12,13-dibutyrate ([3H]PDBu). When the tissue was homogenized in the absence of Ca2+ chelator (10 mM EGTA/2 mM EDTA), Scatchard analysis of the specific [3H]PDBu bindings to both particulate and soluble fractions yielded a single class of high-affinity binding site (Kd = 7.1 and 7.4 nM: Bmax = 45.4 and 3.1 pmol/mg protein, respectively). The particulate fraction retained the majority of [3H]PDBu binding (98% of total binding activity), while the soluble fraction was almost devoid of binding activity (2%). In the presence of Ca2+ chelator, more of the activity was found in the soluble fraction (30%). The binding of [3H]PDBu was potently inhibited by active phorbol esters and related diterpenes with Ki of nanomolar concentration but not by inactive ones. Diolein (OAG), a synthetic diacylglycerol, and polymixin B, an inhibitor of protein kinase C (PKC), inhibited the binding moderately (Ki = 5.8 and 1.3 microM, respectively). H-7, an inhibitor of PKC and cyclic nucleotides-dependent kinase, did not compete with [3H]PDBu for the binding sites (Ki greater than 100,000 nM). The regional distribution of specific [3H]PDBu binding in the human brain was rather uneven and resembled that of [3H]PDBu autoradiograms and PKC-like immunoreactivities in the rat brain. The binding capacities were generally in the order: rhinencephalon greater than basal ganglia greater than cerebral cortex greater than diencephalon greater than cerebellum greater than mesencephalon. Age-related loss of binding sites was observed in the prefrontal cortex of the subjects 33-81 years of age. In Parkinson's disease, the phorbol ester binding showed a significant reduction in the substantia nigra, caudate putamen, and pallidum, whereas it was unchanged in the prefrontal cortex and caudate nucleus of schizophrenics, when compared with the relevant controls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.