Abstract

Phononic crystal band gaps (BGs), which are realized by Bragg scattering, have a central frequency and width related to the unit cell’s size and the impedance mismatch between material phases. BG tuning has generally been performed by either trial and error or by computational tools such as topology optimization. In either case, understanding how to systematically change the design for a particular band structure is missing. This paper addresses this by closely studying the displacement modes within the wavebands that are responsible for the BG. We look at the variation in different displacement modes due to the changes in the geometry and correlate these changes to their corresponding band structures. We then use this insight to design the unit cell for a particular application, for instance, for generating partial BGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.