Abstract

The paper reports a complete analysis of the phonon structure of crystalline picene, a recently announced organic semiconductor. Both lattice and intramolecular vibrations are investigated. An exhaustive assignment of lattice phonons is obtained through polarized Raman spectra assisted by lattice dynamics calculations based on a well tested atom-atom potential model. Raman, infrared spectra and density functional (DFT) calculations are used for the characterization of intramolecular modes. Coupling between low-frequency molecular vibrations and lattice phonons is accounted for. Molecule-to-molecule transfer integrals, as well as the Peierls and Holstein (non-local and local) coupling constants, are evaluated through the semiempirical method INDO/S (Intermediate Neglect of Differential Overlap with Spectroscopic parametrization).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.