Abstract

Manipulation of upconversion (UC) emission is of particular importance for multiplexed bioimaging. Here, we precisely manipulate the UC color output by utilizing the phonon-assisted energy back transfer (EBT) process in ultra-small (sub-10 nm) Gd2O3:Yb(3+)/Er(3+) UC nanoparticles (UCNPs). We synthesized the Gd2O3:Yb(3+)/Er(3+) UCNPs by adopting the laser ablation in liquid (LAL) technique. The synthesized Gd2O3:Yb(3+)/Er(3+) UCNPs are small spherical and monoclinic structures. Continuous color-tunable (from green to red) UC fluorescence emission is achieved by increasing the concentration of Yb(3+) ions from 0 to 15 mol%. A phonon-assisted energy back transfer (EBT) process from Er(3+) ((4)S3/2 → (4)I13/2) to nearby Yb(3+) ((2)F7/2 → (2)F5/2), which can significantly enhance red emission at 672 nm and decrease green emission, is responsible for the color-tunable UC emission by increasing the Yb(3+) concentration in Gd2O3:Yb(3+)/Er(3+) UC nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.