Abstract

It was shown previously that low-Mg2+-induced epileptiform activity in rat entorhinal cortex slices changes with time from a pattern of serial seizure-like events (SLEs) to a state of continuously recurring epileptiform activity. Valproic acid blocked the early SLEs but not the late activity. It was proposed that the late activity is a model for pharmacoresistant status epilepticus since it was also refractory to phenytoin, carbamazepine, phenobarbital, and midazolam. In the present study, it is demonstrated that phenytoin (50 microM, n=6), phenobarbital (150 microM, n=7), and midazolam (50 microM, n=5) were able to block the early SLEs but not the late activity at the same concentrations. Carbamazepine (50 microM) reduced the duration of the SLEs from 21 +/-5 s to 4+/-3 s (P<0.01), the interictal interval from 123+/-27 s to 27+/-19 s (P<0.01), the SLE-associated rise of [K+]o from 7.7+/-0.5 mM to 5.7+/-0.8 mM (n=4, P<0.05), and the spread of the SLE between entorhinal cortex and neocortex from 4.0+/-0.6 s to 0.8+/-0.1 s (n=4, P<0.05). Lower concentrations of phenytoin (5 and 10 microM, n=5), carbamazepine (10 microM, n =6), and phenobarbital (50 microM, n = 4) had no effect. In conclusion, the hypothesis is supported that low-Mg2+-induced epileptiform activity in rat entorhinal cortex is an in vitro model for the transition from pharmacosensitive to pharmacoresistant status epilepticus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.