Abstract

Based on wastewater and raw/digested sludge samples from 29 wastewater treatment plants in 25 Chinese cities, the nationwide profiles of cis- and trans- isomers of phenylmethylsiloxanes (P3 and P4) and trifluoropropylmethylsiloxanes (D3F and D4F) were investigated. Calculated with paired influents/sludges positive for these compounds, majority (93% at mean) of them were found accumulating in raw sludges [<LOQ-188 ng/g dw (dry weight), df (detection frequency) = 0–96.6%, n = 58] during wastewater treatment. Overall, trifluoropropylmethylsiloxanes were merely found in 6 cities, while phenylmethylsiloxanes were found in all cities distributed over seven geographic regions of China. Sludge emissions of phenylmethylsiloxanes in each region correlated with their reported consumption volume (R2 = 0.81, except for the Southwest China), per capita gross domestic products (R2 = 0.20), and annual average temperature (R2 = 0.63). Although not found in wastewater biological treatment processes, degradation of phenylmethylsiloxanes and trifluoropropylmethylsiloxanes was apparent (3.0–25.9%) during sludge-digestion processes. In digestion experiments, detection of silanediols and silanetriols indicated possible biodegradation pathway, i.e., hydrolysis of Si-O and Si-C bones, with half-lives ranging from 33.7–57.7 d The calculated hazard quotients of these compounds in soils undergoing one year sludge-fertilization were less than 0.01, but their ecological risks should be further studied in view of their potential accumulation in soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.