Abstract

Phenotypic variation within species can have community- and ecosystem-level effects. Such variation may be particularly important in ecosystem engineers, including many invasive species, because of the strong influence of these species on their surrounding communities and environment. We combined field surveys and glasshouse experiments to investigate phenotypic variation within the invasive common reed, Phragmites australis, among four estuarine source sites along the east coast of North America. Field surveys revealed variation in P. australis height and stem density among source sites. In a glasshouse environment, percent germination of P. australis seeds also varied across source sites. To test the degree to which phenotypic variation in P. australis reflected genetic or environmental differences, we conducted a glasshouse common garden experiment assessing the performance of P. australis seedlings from the four source sites across a salinity gradient. Populations maintained differences in morphology and growth in a common glasshouse environment, indicating a genetic component to the observed phenotypic variation. Despite this variation, experimentally increased porewater salinity consistently reduced P. australis stem density, height, and biomass. Differences in these morphological metrics are important because they are correlated with the impacts of invasive P. australis on the ecological communities it invades. Our results indicate that both colonization and spread of invasive P. australis will be dependent on the environmental and genetic context. Additional research on intraspecific variation in invasive species, particularly ecosystem engineers, will improve assessments of invasion impacts and guide management decisions in estuarine ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.