Abstract
SF-1 (steroidogenic factor-1) (NR5A1) and DAX-1 (dosage-sensitive sex-reversal, adrenal hypoplasia congenital, X chromosome) (NR0B1) are orphan nuclear receptors that are expressed in the adrenal gland, gonads, ventromedial hypothalamus (VMH), and pituitary gonadotrope cells. The function of these genes has been clarified by examining the consequences of naturally occurring mutations in humans, as well as targeted disruption of the genes in mice. Mutations in DAX1 cause adrenal hypoplasia congenita (AHC), an X-linked disorder characterized by adrenal insufficiency and failure to undergo puberty because of hypogonadotropic hypogonadism. Most DAX1 mutations introduce frameshifts and/or cause premature termination of the protein. Relatively few missense mutations have been described and all are located within the carboxy-terminal half of the protein. Transfection assays demonstrate that AHC-associated DAX1 mutations abrogate its ability to act as a transcriptional repressor of SF-1. Most boys affected with AHC present with adrenal insufficiency in early infancy, although a significant fraction present in later childhood or even as young adults. The degree of gonadotropin deficiency is also variable. With the exception of one mild missense DAX1 mutation, genotype–phenotype correlations have been elusive, suggesting an important role for modifier genes. Targeted mutagenesis of Dax1 ( Ahch) in mice reveals an additional role in testis development and spermatogenesis. Similar abnormalities appear to be present in humans. Targeted mutagenesis of Sf1 ( FtzF1) prevents gonadal and adrenal development, and causes male-to-female sex-reversal. A human XY individual with a heterozygous SF1 mutation presented with adrenal insufficiency and complete sex-reversal; this DNA-binding domain mutation prevents SF-1 stimulation of its target genes. In addition to their clinical relevance, studies of SF1 and DAX1 are proving useful for unraveling the genetic pathways that govern adrenal and gonadal development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.