Abstract

Osteoblasts are target cells for glucocorticoids and calcitriol, and their phenotype is greatly modified by these hormones. We investigated the effect of continuous or discontinuous hormonal exposure to osteoblasts derived from rat bone marrow stromal cells in long-term subcultures. Stromal cells were grown in primoculture in presence of dexamethasone (dex), but in following subcultures, dex and/or calcitriol were added just after seeding or after a 7-day hormone-free period. Cell proliferation, alkaline phosphatase (ALP) histochemical staining, and enzymatic bioactivity measurement, osteocalcin (OC), ALP and bone sialoprotein (BSP) mRNA expression were used to study the differential effect on osteoblastic phenotype of various conditions of treatment by dex and calcitriol. In primoculture, the osteoblastic differentiation was confirmed by the formation of calcified nodules and by strong expression of ALP, OC, and BSP mRNAs. In subcultures, proliferation of stromal cells was stimulated by dex and inhibited by calcitriol and by both hormones. Cell proliferation was not modified by hormonal lack during 7 days. Continuous hormonal treatment by dex strongly enhanced OC and BSP mRNAs, but apparently did not modified ALP mRNAs expression. Continuous treatment by calcitriol decreased ALP and the dex-induced BSP expression and stimulated the OC mRNAs level, strongly when associated with dex. The population of ALP+ cells and ALP bioactivity were strongly increased by dex, whereas calcitriol or both hormones decreased them. When the subcultures were undergone without hormonal treatment during 7 days, all osteogenic mRNAs strongly decreased even after hormonal recovery. Dex, calcitriol, and both hormones inhibited ALP mRNAs. OC messengers were only weakly detectable with both hormones. ALP+ cell population and ALP bioactivity were decreased after 14 days of hormonal treatment recovery. These results support that continuous presence of glucocorticoids appears as a major key for the permanent expression of the osteoblastic phenotype that is inhibited by calcitriol, in the rat bone marrow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.