Abstract

The anaerobic glycerol pathway was studied in seven enterobacterial species selected as representative of different behaviours in terms of anaerobic glycerol dissimilation. The presence of oxidative and reductive pathways of the dha regulon in Klebsiella pneumoniae enabled the cells to grow fermentatively on glycerol. The first two enzymes of the dha regulon (glycerol dehydrogenase type I and dihydroxyacetone kinase) represent the oxidative branch, while the latter two (glycerol dehydratase and 1,3-propanediol dehydrogenase) represent the reductive branch of glycerol fermentation. The slower utilization of glycerol by K. oxytoca was attributed to low production of 1,3-propanediol. K. oxytoca lacked glycerol dehydratase and demonstrated low 1,3-propanediol dehydrogenase activity. K. planticola and K. ozaenae differed from K. pneumoniae and K. oxytoca in lacking the ability to grow on glycerol. K. planticola lacked both enzymes of the reductive branch of glycerol fermentation, and K. ozaenae possessed glycerol dehydrogenase only. K. rhinoscleromatis and Hafnia alvei, like Escherichia coli, did not possess a dha regulon. The glycerol dehydrogenase type II of H. alvei was distinct from that of E. coli. The phenotypic diversity of anaerobic glycerol dissimilation may have taxonomic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.