Abstract

The evolution of dioecy in plants is expected to be followed by sex-specific selection, leading to sexual dimorphism. The extent of the response to selection depends on the genetic covariance structure between traits both within and between the sexes. Here I describe an investigation to determine phenotypic and genetic correlations between reproductive traits within cryptically dioecious Thalictrum pubescens and within morphologically dioecious T. dioicum. Females of T. pubescens produce flowers having stamens and pistils, appearing hermaphroditic. Genetic correlations were estimated as family-mean correlations among paternal half-sib families. Positive phenotypic and genetic correlations between parts of the same reproductive organs, as the anther and filament of the stamen, indicate developmental associations between these traits in both species. Negative genetic correlations were detected between pistil number and size of reproductive organs in T. dioicum and showed the same direction, but not significance, in T. pubescens. There was a negative phenotypic correlation between the number of stamens and the number of pistils within female flowers of T. pubescens. Within T. pubescens, there was a positive genetic correlation between the number of stamens in males and the number of pistils in females, indicating that floral evolution in males and females may not be independent in this species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.