Abstract
Simple SummaryAzolla filiculoides L. is an aquatic fern with the potential for degradation and accumulation of pollutants. It is accompanied by microorganisms (a microbiome) that may participate in these processes. Microorganisms showing specific phenotypes may promote plant growth in the presence of pollutants. We intended to identify such beneficial strains by studying their potential for the degradation of given organic compounds and the production of hydrolytic enzymes and phytohormones under heavy metal stress (Pb, Cd, Cr (VI), Ni, Ag, and Au). We found 10 isolates displaying varying phenotypes depending on the stress factor. The most efficient was Delftia sp., which showed potential for both degradation of organics and plant growth promotion. Other strains were more efficient at metabolizing organics or exhibited enzymatic responses in the presence of the studied metals. These identified phenotypes made all strains beneficial in both supporting plants in unfavorable conditions and degradation of organic compounds. A biopreparation containing these strains may be valuable as both a biofertilizer and a bioremediation agent.As an adaptation to unfavorable conditions, microorganisms may represent different phenotypes. Azolla filiculoides L. is a hyperaccumulator of pollutants, but the functions of its microbiome have not been well recognized to date. We aimed to reveal the potential of the microbiome for degradation of organic compounds, as well as its potential to promote plant growth in the presence of heavy metals. We applied the BiologTM Phenotypic Microarrays platform to study the potential of the microbiome for the degradation of 96 carbon compounds and stress factors and assayed the hydrolytic potential and auxin production by the microorganisms in the presence of Pb, Cd, Cr (VI), Ni, Ag, and Au. We found various phenotype changes depending on the stress factor, suggesting a possible dual function of the studied microorganisms, i.e., in bioremediation and as a biofertilizer for plant growth promotion. Delftia sp., Staphylococcus sp. and Microbacterium sp. exhibited high efficacy in metabolizing organic compounds. Delftia sp., Achromobacter sp. and Agrobacterium sp. were efficient in enzymatic responses and were characterized by metal tolerant. Since each strain exhibited individual phenotype changes due to the studied stresses, they may all be beneficial as both biofertilizers and bioremediation agents, especially when combined in one biopreparation.
Highlights
Environmental pollution is one of the most important problems that still need to be solved
The following order of carbon source use rates was exhibited by the studied bacteria: amino acids > carboxylic acids > carbohydrates
A detailed analysis of the average well color density (AWCD) variation indicated that the carboxylic acid metabolizing activity of the Micrococcus sp
Summary
Environmental pollution is one of the most important problems that still need to be solved. Numerous types of pollutants are released into the atmosphere, water, and soil, strongly affecting the quality of nature and human life. There is still a need to search for new ways to mitigate and remove pollutant loads. In order to reduce the human impact on the environment, measures based on natural processes are more desirable than typical techniques that consume resources and which often have negative side effects. Microorganisms associated with plants are arousing considerable interest. They can be present in the surroundings of plant roots (rhizobacteria) and on the surface (phylosphere) or inside their host (endoshpere).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.