Abstract

Ecologists have identified a growing number of functional traits that promote invasion. However, whether trait differences between exotic and native species promote invasion success by enhancing niche differences or giving invaders competitive advantages is poorly understood. We explored the mechanisms by which phenology determines invasion success in a California annual plant community by quantifying how the seasonal timing of growth relates to niche differences that stabilize coexistence, and the competitive ability differences that drive dominance and exclusion. We parameterized models of community dynamics from experimentally assembled annual communities in which exotic plants displayed earlier, coincident, or later phenology than native residents. Using recent theoretical advances from the coexistence literature, we found that differences in phenology promote stabilizing niche differences between exotic and native species. However, phenology was more strongly related to competitive ability differences, allowing later invaders to outcompete earlier native competitors and native residents to outcompete earlier invaders in field experiments. Few of these insights could be inferred by comparing the competitive outcomes across invaders, highlighting the need to quantify niche and competitive ability differences when disentangling how species differences drive invasion success.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.