Abstract

Mountain crowberry (Empetrum nigrum ssp. hermaphroditum) is a keystone species in northern ecosystems and exerts important ecosystem-level effects through high concentrations of phenolic metabolites. It has not been investigated how crowberry phenolics will respond to global climate change. In the tundra, grazing by reindeer (Rangifer tarandus) affects vegetation and soil nutrient availability, but almost nothing is known about the interactions between grazing and global climate change on plant phenolics. We performed a factorial warming and fertilization experiment in a tundra ecosystem under light grazing and heavy grazing and analyzed individual foliar phenolics and crowberry abundance. Crowberry was more abundant under light grazing than heavy grazing. Although phenolic concentrations did not differ between grazing intensities, responses of crowberry abundance and phenolic concentrations to warming varied significantly depending on grazing intensity. Under light grazing, warming increased crowberry abundance and the concentration of stilbenes, but decreased e.g., the concentrations of flavonols, condensed tannins, and batatasin-III, resulting in no change in total phenolics. Under heavy grazing, warming did not affect crowberry abundance, and induced a weak but consistent decrease among the different phenolic compound groups, resulting in a net decrease in total phenolics. Our results show that the different phenolic compound groups may show varying or even opposing responses to warming in the tundra at different levels of grazing intensity. Even when plant phenolic concentrations do not directly respond to grazing, grazers may have a key control over plant responses to changes in the abiotic environment, reflecting multiple adaptive purposes of plant phenolics and complex interactions between the biotic and the abiotic factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.