Abstract

We report sorption isotherms and uptake kinetics for phenanthrene and pyrene with three organic model sorbents: polyoxymethylene (POM), coke, and activated carbon. We combine batch equilibration and kinetic experiments with the direct observation of the long-term diffusion of phenanthrene and pyrene as measured within cross-sectioned particles using microprobe laser-desorption laser-ionization mass spectroscopy (muL2MS). For POM pellets, the intraparticle concentration profiles predicted from kinetic batch experiments and a polymer diffusion model with spherical geometry are in agreement with the independent muL2MS measurements. For coke particles, the apparent diffusivities decreased with smaller particle size. These trends in diffusivities were described by a sorption-retarded pore diffusion model with a particle-size-dependent solid-water partitioning coefficient obtained from apparent equilibrium observed in the kinetic batch studies. For activated carbon, the muL2MS measurements showed faster radial diffusion of phenanthrene and pyrene into the particle interior than predicted from diffusion models based on a single sorption domain and diffusivity. A branched pore kinetic model, comprising polycyclic aromatic hydrocarbon (PAH) macropore diffusion with kinetic exchange of PAH between macroporous and microporous domains, fits the experimental observations better. Because of parallel macro- and microdiffusion processes, nonlinear sorption isotherms, and a concentration-dependent diffusivity, it is not possible to make independent parameter estimations for intraparticle diffusion in activated carbon using our present procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.