Abstract

The third-order susceptibility is investigated in a five-level atomic system in which the laser beams couple the ground state to a four-level closed-loop system. It is found that under the condition of the multiphoton resonance, one can enhance the Kerr nonlinearity of such a medium by properly adjusting the amplitudes and phases of the applied fields. In this case, the linear and nonlinear absorption reduce considerably in a region with a positive group velocity. It is demonstrated that the third-order susceptibility is very sensitive to the relative phase of the applied fields. An analytical model is presented to elucidate such phase control of the Kerr nonlinearity. A comparison is also made between the Kerr-nonlinear indices for the five-, four-, and three-level systems. It is realized that the magnitude of the Kerr nonlinearity for the five-level system is larger than that of the three- and four-level counterparts. Finally, it is shown that effect of Doppler broadening can lead to an enhanced Kerr nonlinearity while maintaining linear and nonlinear absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.