Abstract
We study the quantum ground state phases of the one-dimensional disordered Bose--Hubbard model with attractive interactions, realized by a chain of superconducting transmon qubits or cold atoms. We map the phase diagram using perturbation theory and exact diagonalization. Compared to the repulsive Bose--Hubbard model, the quantum ground state behavior is dramatically different. At strong disorder of the on-site energies, all the bosons localize into the vicinity of a single site, contrary to the Bose glass behavior of the repulsive model. At weak disorder, depending on hopping, the ground state is either superfluid or a W state, which is a multi-site and multi-particle entangled superposition of states where all the bosons occupy a single site. We show that the robustness of the W phase against disorder diminishes as the total number of bosons increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.