Abstract

We study the quantum phase transition from an insulator to a metal realized at ${t}^{\ensuremath{'}}={t}_{c}^{\ensuremath{'}}>0.5t$ in the ground state of the half-filled Hubbard chain with both nearest-neighbor $(t)$ and next-nearest-neighbor $({t}^{\ensuremath{'}})$ hopping. The study is carried out using the bosonization approach and density-matrix renormalization-group calculations. An effective low-energy Hamiltonian that describes the insulator-metal transition is derived. We find that the gross features of the phase diagram are well described by the standard theory of commensurate-incommensurate transitions in a wide range of parameters. We also obtain an analytical expression for the insulator-metal transition line ${t}_{c}^{\ensuremath{'}}(U,t)$. We present results of density-matrix-renormalization-group calculations of spin and charge distribution in various sectors of the phase diagram. The numerical results support the picture derived from the effective theory and give evidence for the complete separation of the transitions involving spin and charge degrees of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.