Abstract
A phaseless Gauss-Newton inversion (PGNI) algorithm is developed for microwave imaging (MWI) applications. In contrast to full-data MWI inversion that uses complex (magnitude and phase) scattered field data, the proposed PGNI algorithm inverts phaseless (magnitude-only) total field data. This PGNI algorithm is augmented with three different forms of regularization, originally developed for complex GNI. First, we use the standard weighted L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> norm total variation multiplicative regularizer, which is appropriate when there is no prior information about the object being imaged. We then use two other forms of regularization operators to incorporate prior information about the object being imaged into the PGNI algorithm. The first one, herein referred to as SL-PGNI, incorporates prior information about the expected relative complex permittivity values of the object of interest. The other, referred to as spatial prior PGNI (SP-PGNI), incorporates SPs (structural information) about the objects being imaged. The use of prior information aims to compensate for the lack of total field phase data. The PGNI, SL-PGNI, and SP-PGNI inversion algorithms are then tested against synthetic and experimental phaseless total field data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.