Abstract

We present calculations of ionization rates, angular distributions, and above-threshold-ionization spectra for a hydrogen atom in a strong, two-color laser field. The two lasers are first- and second-harmonic fields with the same intensity and a constant relative phase difference between them. At longer wavelengths (1064 nm) and higher intensities (>${10}^{13}$ W/${\mathrm{cm}}^{2}$), there is clear evidence in the phase dependence of the ionization rates that ionization takes place primarily through tunneling. Even though the total ionization rate in this regime depends only on the peak value of the time-dependent electric field, the angular distributions show additional phase-sensitive effects. In particular, there is a large forward-backward asymmetry in the emitted electron distributions that is not simply correlated with the maximum electric field. At shorter wavelengths and/or lower intensities, there is a transition to multiphoton ionization with interference between ionization paths from the two lasers evident in the total ionization rates. In all cases, we find that the total ponderomotive shift of the ionization limit is the sum of the shifts for the two individual fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.