Abstract
Mechanical oscillators employing varying capacitance scheme for the transduction of the motion are significantly limited by the effects of capacitive feedthrough. This work focuses on revealing the nature of feedthrough parasitic dominated resonance and demonstrating a phase-controlled oscillation technique for operating microresonators beyond the nonlinear regime with on-chip feedthrough effect (FE) de-embedding. Our method imposes hybrid control on the phase offset of the resonant motion and electromechanical coupling of the transducers to enable the isolation of the FE in the nonlinear bifurcation points. The strategies of the on-chip FE control in our capacitive platform can be suitably transformed for the use in feedthrough parasitic dominated systems using alternative transduction principles as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.