Abstract

As we embark on an era of artificial intelligence (AI) and cognitive computing, there is a pressing need for energy-efficient computing systems for highly data-centric AI related applications. It is becoming increasingly clear that to build efficient cognitive computers, we need to transition to novel architectures where memory and processing are better collocated. Computational memory is one such approach where the physical attributes and state dynamics of memory devices are exploited to perform certain computational tasks in place with very high areal and energy efficiency (Fig. 1) [1]. Phase-change memory (PCM) devices based on materials such as Ge 2 Sb 2 Te 5 are appealing for computational memory owing to their multi-level storage capability and potential scalability. In this paper, we present a brief overview of our work towards enabling energy-efficient brain-inspired computing using PCM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.