Abstract
We consider a family of potentials f, derived from the Hofbauer potentials, on the symbolic space Omega=\{0,1\}^\mathbb{N} and the shift mapping $\sigma$ acting on it. A Ruelle operator framework is employed to show there is a phase transition when the temperature varies in the following senses: the pressure is not analytic, there are multiple eigenprobabilities for the dual of the Ruelle operator, the DLR-Gibbs measure is not unique and finally the Thermodynamic Limit is not unique. Additionally, we explicitly calculate the critical points for these phase transitions. Some examples which are not of Hofbauer type are also considered. The non-uniqueness of the Thermodynamic Limit is proved by considering a version of a Renewal Equation. We also show that the correlations decay polynomially and that each one of these Hofbauer potentials is a fixed point for a certain renormalization transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.