Abstract

Structural stability of a transparent conducting oxide CuLaO2 at high pressures is investigated using in-situ Raman spectroscopy, electrical resistance, and x-ray diffraction techniques. The present Raman investigations indicate a sequence of structural phase transitions at 1.8 GPa and 7 GPa. The compound remains in the first high pressure phase when pressure is released. Electrical resistance measurements carried out at high pressures confirm the second phase transition. These observations are further supported by powder x-ray diffraction at high pressures which also showed that a-axis is more compressible than c-axis in this compound. Fitting the pressure dependence of unit cell volume to 3rd order Birch-Murnaghan equation of state, zero pressure bulk modulus of CuLaO2 is determined to be 154(25) GPa. The vibrational properties in the ambient delafossite phase of CuLaO2 are investigated using ab-initio calculations of phonon frequencies to complement the Raman spectroscopic measurements. Temperature dependence of the Raman modes of CuLaO2 is investigated to estimate the anharmonicity of Raman modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.