Abstract

Bi4Ti3O12 is a representative of the Aurivillius family of layered perovskites. These are high-temperature ferroelectric materials with prospects for applications in random-access memory and are characterized by an extremely confused interaction of their structural degrees of freedom. Using group-theoretical methods, structural distortions in the Bi4Ti3O12 high-symmetry phase, caused by rotations of rigid octahedra and their displacements as a single unit, have been investigated, taking into account the connections between them. Within the Landau theory, a stable thermodynamic model of phase transitions with three order parameters has been constructed. It is shown that, according to the phenomenological phase diagram, the transition between the high-temperature tetragonal phase and the low-temperature ferroelectric can occur both directly and through intermediate states, including those observed experimentally. The role of improper ordered parameters and possible domain configurations in the structure formation of the low-temperature ferroelectric phase are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.