Abstract
We study the phase transitions of three-dimensional Chern–Simons theory on with a varied number of massive fundamental hypermultiplets and with a Fayet–Iliopoulos parameter. We characterize the various phase diagrams in the decompactification limit, according to the number of different mass scales in the theory. For this, we extend the known solution of the saddle-point equations to the setting where the one-cut solution is characterized by asymmetric intervals. We then study the large N limit of Wilson loops in antisymmetric representations, with the additional scaling corresponding to the variation of the size of the representation. We give explicit expressions, both with and without the FI terms, and study 1/R corrections for the different phases. These corrections break the perimeter law behavior, as they introduce scaling with the size of the representation. We show how the phase transitions of the Wilson loops can either be of first or second order and determine the underlying mechanism in terms of the eventual asymmetry of the support of the solution of the saddle-point equation, at the critical points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.