Abstract

Glycerol and polymyxin have been shown by X-ray diffraction to induce interdigitated bilayers in phosphatidylcholine (PC) and phosphatidyglycerol (PG), respectively (McDaniel, R.V., et al. (1983) Biochim. Biophys. Acta 731, 97–108; Ranck, J.-L. and Tocanne, J.-F. (1982) FEBS Lett. 143, 175–178). In the present study we have investigated the phase behavior of PC and PG in the presence of glycerol and polymyxin by differential scanning calorimetry and the use of fatty acid spin labels. Interdigitation causes a large increase in the order parameter of a fatty acid spin labeled near the terminal methyl, 16-doxylstearate, so that it was similar to that of a fatty acid labeled much closer to the polar head group region, 5-doxylstearate. Thus interdigitation abolishes the fluidity gradient found in a non-interdigated bilayer. 16-Doxylstearate may be useful in detecting interdigitation of lipid bilayers caused by other substances. The different samples all went through two transitions on heating or cooling, or both. However, use of the fatty acid spin label showed that the molecular events during these transitions varies for different samples. The results suggested that PC-glycerol freezes from the liquid-crystalline phase into a non-interdigitated gel phase. This subsequently becomes interdigitated upon lowering the temperature a few degrees, in a low enthalpy transition. PG-polymyxin shows a similar behavior except that the enthalpy of the non-interdigitated gel to interdigitated phase transition is greater and the transition is reversible on heating. Thus on heating PG-polymyxin first goes through a transition from the interdigitated phase to a non-interdigitated gel phase and then, in a separate transition, to the liquid-crystalline phase. This occurs because the fatty acid chains in the presence of polymyxin become too disordered with increase in temperature to maintain the interdigitated state. PG-glycerol goes into the interdigitated state less readily than the other mixtures. If cooled rapidly, PG-glycerol freezes into a metastable phase which is more disordered than the interdigitated phase. It goes into the interdigitated phase in an exothermic transition on heating. An increase in fatty acid chain length causes greater steric hindrance to interdigitation but also increases the stabilizing energy gained by interdigitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.