Abstract

We report the synthesis of four perovskite-type metal formate frameworks, [CH3NH2NH2][M(HCOO)3] (MHyM) with M = Mn, Mg, Fe, and Zn. These compounds exhibit two structural phase transitions. The first transition temperature depends weakly on a type of divalent metal and is observed at 310–327 K on heating. X-ray diffraction, DSC, and vibrational studies revealed that it has a second-order character. It is associated with partial ordering of the methylhydrazinium (MHy+) cations and change of symmetry from nonpolar R3c to polar R3c. Pyroelectric measurements suggest the ferroelectric nature of the room-temperature phase. The second, low-temperature phase transition has a first-order character and is associated with further ordering of the MHy+ cations and distortion of the metal formate framework. Magnetic susceptibility data show that MHyMn and MHyFe exhibit ferromagnetic-like phase transitions at 9 and 21 K, respectively. Since the low-temperature phase is polar, these compounds are possible multiferroic ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.