Abstract
Abstract Phase transformations during the oxidation of fayalite (Fe2SiO4) are investigated for the recovery of iron from iron-rich nickel slag by oxidation-magnetic separation. The proportions of various phases calculated by FactSage 7.1 show that augite and spinel are the major phases in the FeO-SiO2-MgO-CaO-O2 system in air atmosphere. The decreased content of Fe2+shows that Fe2SiO4 is gradually oxidized into Fe3O4 with increasing oxidation time. XRD patterns demonstrate that Fe3O4and Ca(Mg,Fe)Si2O6 are the dominant phases after the oxidation. The Mössbauer spectrum indicates that 93.1 wt.% of iron in oxidized nickel slag is in magnetic minerals, while a limited amount of iron is contained in non-magnetic minerals. Ca(Mg,Fe)Si2O6 was formed during the heating stage in Ar atmosphere through the polymerization of SiO4 4-and also via peritectic reaction after the isothermal oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.