Abstract

Piezoelectrics are critical functional components of many practical applications such as sensors, ultrasonic transducers, actuators, medical imaging, and telecommunications. So far, the best performing piezoelectrics are ferroelectric ceramics, many of which are toxic, heavy, hard, and cost-ineffective. Recently, a groundbreaking discovery of extraordinarily large piezoelectric coefficients in the family of organic-inorganic perovskites gave a hope for a cheaper, environmentally friendly, inexpensive, lightweight, and flexible alternative. However, the origin of such a response in organic-inorganic ferroelectrics whose spontaneous polarization is an order of magnitude smaller than for inorganic counterparts remains unclear. In our study, we employ first-principles simulations to predict that the mechanism associated with large piezoelectric constants is of extrinsic origin and associated with switching between the stable phase and a previously overlooked energetically competitive metastable phase that can be stabilized by the external stress. The phase switching changes the polarization direction and therefore produces a large piezoelectric response similar to PbZr_{1-x}Ti_{x}O_{3} near the morphotropic phase boundary. The existence of such metastable phases is likely to manifest as the dynamical molecular disorder above the Curie temperature and therefore could be intrinsic to the entire family of organic-inorganic ferroelectrics with such disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.