Abstract

The phase composition and sintering behavior of two commercially available 10mol%Sc2O3–1mol%CeO2–ZrO2 ceramics produced by Daiichi Kigenso Kagaku Kogyo (DKKK) and Praxair have been studied. DKKK powders have been manufactured using a wet coprecipitation chemical route, and Praxair powders have been produced by spray pyrolysis. The morphology of the powders, as studied by scanning electron microscopy, has been very different. DKKK powders were presented as soft (∼100μm) spherical agglomerates containing 60–100nm crystalline particles, whereas the Praxair powders were presented as sintered platelet agglomerates, up to 30μm long and 3–4μm thick, which consisted of smaller 100–200nm crystalline particles. X-ray diffraction analysis has shown that both DKKK and Praxair powders contained a mixture of cubic (c) and rhombohedral (r) phases: 79% cubic +21% rhombohedral for DKKK powders and 88% cubic +12% rhombohedral for Praxair powders. Higher quantities of the Si impurity level have been detected in Praxair powder as compared to DKKK powder by secondary ion mass spectroscopy. The morphological features, along with differences in composition and the impurity level of both powders, resulted in significantly different sintering behaviors. The DKKK powders showed a more active sintering behavior than of Praxair powders, reaching 93–95% of theoretical density when sintered at 1300°C for 2h. Comparatively, the Praxair powders required high sintering temperatures at 1500–1600°C. However, even at such high sintering temperatures, a significant amount of porosity was observed. Both DKKK and Praxair ceramics sintered at 1300°C or above exist in a cubic phase at room temperature. However, if sintered at 1100°C and 1200°C, the DKKK ceramics exist in a rhombohedral phase at room temperature. The DKKK ceramics sintered at 1300°C or above exhibit cubic to rhombohedral and back to cubic phase transitions upon heating at a 300–500°C temperature range, while Praxair ceramics exist in a pure cubic phase upon heating from room temperature to 900°C. However, if heated rather fast, the cubic to rhombohedral phase transformation could be avoided. Thus it is not expected that the observed phase transitions play a significant role in developing transformation stresses in ScCeZrO2 electrolyte upon heating and cooling down from the operation temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.