Abstract

Nonlinear sustaining amplifier operation has been investigated and applied to high-power negative resistance oscillators (NRO), using single-port surface transverse wave (STW) resonators, and single-transistor sustaining amplifiers for feedback-loop STW oscillators (FLSO) stabilized with two-port STW devices. In all cases, self-limiting, silicon (Si)-bipolar sustaining amplifiers that operate in the highly nonlinear AB-, B-, or C-class modes are implemented. Phase-noise reduction is based on the assumption that a sustaining amplifier, operating in one of these modes, uses current limiting and remains cut off over a significant portion of the wave period. Therefore, it does not generate 1/f noise over the cut-off portion of the radio frequency (RF) cycle, and this reduces the close-in oscillator phase noise significantly. The proposed method has been found to provide phase-noise levels in the -111 to -119 dBc/Hz range at 1 KHz carrier offset in 915 MHz C-class power NRO and FLSO generating up to 23 dBm of RF-power at RF versus dc (RF/dc) efficiencies exceeding 40%. C-class amplifier design techniques are used for adequate matching and high RF/dc efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.