Abstract

Dual frequency combs are emerging as new tools for spectroscopy and signal processing. The relative phase noise of the tone pairs determines the performance (e.g., signal-to-noise ratio) of the detected spectral components. Although previous research has shown that the signal quality generally degrades with an increase in frequency difference between tone pairs, the scaling of the relative phase noise of dual frequency comb systems has not been fully characterized. In this Letter, we model and characterize the phase noise of a coherent electro-optic dual frequency comb system. Our results show that at high offset frequencies, the phase noise is an incoherent sum of the timing phase noise of the two combs, multiplied by line number. At low offset frequencies, however, the phase noise scales more slowly due to the coherence of the common frequency reference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.