Abstract

Phase measurement constitutes a key task in many fields of science, both in the classical and quantum regime. The higher precision of such measurement offers significant advances, and can also be utilized to achieve finer estimates for quantities such as distance, the gravitational constant, electromagnetic field amplitude, etc. Here we theoretically model the use of a quantum network, composed of a randomly coupled set of two-level systems, as a processing device for phase measurement. An incoming resource state carrying the phase information interacts with the quantum network, whose emission is trained to produce a desired output signal. We demonstrate phase-precision scaling following the standard quantum limit and Heisenberg limit. This can be achieved using quantum resource states such as NOON states or other entangled states, however, we also find that classically correlated mixtures of states are alone sufficient, provided that they exhibit quantum coherence. Our proposed setup does not require conditional measurements, and is compatible with many different types of coupling between the quantum network and the phase-encoding state, hence making it attractive to a wide range of possible physical implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.