Abstract

The intrinsic properties of nanoscale active materials are always excellent for energy storage devices. However, the accompanying problems of ion/electron transport limitation and active materials shedding of the whole electrodes, especially for high‐loaded electrode composed of nanoparticles with high specific surface area, bring down their comprehensive performance for practical applications. Here, this problem is solved with the as proposed “phase inversion” method, which allows fabrication of tricontinuous structured electrodes via a simple, convenient, low cost, and scalable process. During this process, the binder networks, electron paths, and ion channels can be separately interconnected, which simultaneously achieves excellent binding strength and ion/electron conductivity. This is verified by constructing electrodes with sulfur/carbon (S/C) and Li3V2(PO4)3/C (LVP/C) nanoparticles, separately delivering 869 mA h g−1 at 1 C in Li–S batteries and 100 mA h g−1 at 30 C in Li–LVP batteries, increasing by 26% and 66% compared with the traditional directly drying ones. Electrodes with 7 mg cm−2 sulfur and 11 mg cm−2 LVP can also be easily coated on aluminum foil, with excellent cycling stability. Phase inversion, as a universal method to achieve high‐performance energy storage devices, might open a new area in the development of nanoparticle‐based active materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.