Abstract
Extending the concept of Wehrl's entropy to s-parametrized quasiprobability distributions, as they are observed in optical homodyne detection with realistic detectors, we show that the marginal entropies with respect to phase and amplitude obey a rigourous inequality relation. Relating those entropies to phase and intensity uncertainties, respectively, we arrive at an uncertainty relation for operationally defined phase and intensity that takes explicit account of the noise introduced by non-ideal detectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.