Abstract
This paper describes a novel numerical algorithm for simulating interfacial dynamics of non-Newtonian fluids. The interface between two immiscible fluids is treated as a thin mixing layer across which physical properties vary steeply but continuously. The property and evolution of the interfacial layer is governed by a phase-field variable ϕ that obeys a Cahn–Hilliard type of convection-diffusion equation. This circumvents the task of directly tracking the interface, and produces the correct interfacial tension from the free energy stored in the mixing layer. Viscoelasticity and other types of constitutive equations can be incorporated easily into the variational phase-field framework. The greatest challenge of this approach is in resolving the sharp gradients at the interface. This is achieved by using an efficient adaptive meshing scheme governed by the phase-field variable. The finite-element scheme easily accommodates complex flow geometry and the adaptive meshing makes it possible to simulate large-scale two-phase systems of complex fluids. In two-dimensional and axisymmetric three-dimensional implementations, the numerical toolkit is applied here to drop deformation in shear and elongational flows, rise of drops and retraction of drops and torii. Some of these solutions serve as validation of the method and illustrate its key features, while others explore novel physics of viscoelasticity in the deformation and evolution of interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.