Abstract

We present a phase-field model of void formation and evolution in irradiated metals by spatially and temporally evolving vacancy and self-interstitial concentration fields. By incorporating a coupled set of Cahn–Hilliard and Allen–Cahn equations, the model captures the processes of point defect generation and recombination, annihilation of defects at sinks, as well as void nucleation and growth in the presence of grain boundaries. Illustrative results are presented that characterize the rate of void growth or shrinkage due to supersaturated vacancy or interstitial concentrations, void nucleation and growth kinetics due to cascade-induced defect production, as well as void denuded and peak zones adjacent to grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.