Abstract

This article discusses two methods for modeling eutectic solidification using the phase-field approach. First, a multi-phase-field model is used to study the three-dimensional morphological evolution of binary eutectics. Performing the calculations in three dimensions allows observation of both lamellar and rod-like structures as well as transient phenomena such as lamellar fault motion, rod-branching, and nucleation or elimination of phases as solidification progresses. The second approach models multiple eutectic grains where the crystallizing phases have an orientation relationship. This approach is promising for modeling complex solidification microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.